Devoir commun de mathématiques - Première S

Durée: 2h00. La calculatrice est autorisée. Il sera tenu compte de la clarté des raisonnements, de la qualité de la rédaction dans l'appréciation des copies. Ce devoir est composé de 5 exercices.

Barème

(5pts)

1

1

1

1

Exercice 1 : On pourra calculer les paramètres statistiques à la calculatrice, mais il faudra écrire la formule permettant de calculer la moyenne et l'écart-type d'une série statistique, au moins dans la question 1.

1°) On a obtenu une série $S_{\scriptscriptstyle 1}$ de dix mesures de la période (en secondes) d'un pendule oscillant:

$$1,9-2-1,8-1,7-2,1-2,1-2-1,9-2,1-6$$

- **a)** Déterminer la médiane et l'écart interquartile de la série S_1 .
- b) Calculer également la moyenne et l'écart-type de cette série.
- ${f 2}^{\circ}$) La dernière valeur de la série S_1 paraît anormale. Elle est sans doute due à une erreur de mesure. On considère alors la série de mesures S_2 formée seulement des neuf premières mesures.



- **b)** Calculer également la moyenne et l'écart-type de la série S_2 .
- c) Comparer les valeurs des différents paramètres obtenus pour les séries S_1 et S_2 . Quelle caractéristique de ces paramètres la comparaison met-elle en évidence?

Exercice 2:

(7pts)

1

1

1

0.5

0.5

0.5

1

- 1°) Soit g la fonction définie par: $g(x) = 4x^2 28x + 40$.
 - a) Mettre g(x) sous forme canonique.
 - **b)** Dresser le tableau de variations de g.
 - g admet-elle un extremum? Si oui lequel, et en quelle valeur de x est-il atteint?
 - c) Résoudre l'équation g(x) = 0 (on demande les valeurs exactes).
- 0.5 **d)** Factoriser g(x).
 - **2°)** Soit *f* la fonction définie par: $f(x) = x^4 8x^3 + 6x^2 + 40x 39$.
 - a) Après avoir justifié la dérivabilité de f, déterminer f'(x).
 - **b)** Vérifier que pour tout x, on a $f'(x) = (x+1)(4x^2-28x+40)$
 - c) En déduire, grâce à la question 1°), une forme factorisée de f'(x) ne comportant que des facteurs du premier degré (*) au maximum.
 - **d)** Combien la courbe représentative C_f de la fonction f possède-t-elle de tangentes parallèles à l'axe des abscisse?
 - e) Déterminer l'équation de la tangente $T_{\scriptscriptstyle 0}$ à $C_{\scriptscriptstyle f}$ au point d'abscisse 0.
 - (*) Une expression est dite "du premier degré" lorsqu'elle ne contient pas de x^2 , ni de x^3 etc... C'est-à-dire que l'exposant maximal de x dans cette expression est 1 (et $x^1 = x$).

Exercice 3:

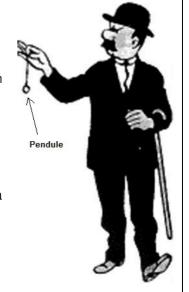
(2pts)

0.5

1

On considère la suite $\left(u_n\right)$ définie pour tout entier naturel n par: $\begin{cases} u_0 = 0 \\ u_{n+1} = u_n + 2n + 1 \end{cases}$

- 0.5 1°) Calculer les cinq premiers termes de cette suite.
 - **2°**) Conjecturer l'expression de u_n en fonction de n .
 - 3°) Démontrer votre conjecture.



Exercice 4: (3pts) ABCD est un carré de centre I, tel que $(\overrightarrow{IA}; \overrightarrow{IB}) = \frac{\pi}{2}$. Déterminer une mesure, puis la mesure principale, de: 1 a) (IA;ID)1 b) $(\overrightarrow{IB}; \overrightarrow{ID})$ c) $(\overrightarrow{IB}; \overrightarrow{CI})$ Exercice 5: La figure n'est pas demandée, mais on pourra la faire au brouillon "pour fixer les idées". (3pts) ABCD est un carré, E est le milieu du segment [AB], F celui du segment [AD]. On munit le plan du repère $(A; \overrightarrow{AE}; \overrightarrow{AF})$. 0.5 1°) Donner les coordonnées des points A, B, C, D, E et F dans ce repère. 1 2°) Déterminer une équation cartésienne de la droite (BF), et vérifier que le point $\,G\,$ appartient à (BF). 4°) Démontrer que les points D, E et G sont alignés. 5°) Que représente le point G pour le triangle ABD?

0.5