- ▶1. Selon l'énoncé, le premier terme de u est $u_4 = -3$. Puisque chaque terme (sauf le premier) est égal au septième du précédent, on a : $u_5 = \frac{1}{7}u_4 = \frac{1}{7} \times -3 = \frac{-3}{7}$; $u_6 = \frac{1}{7}u_5 = \frac{1}{7} \times \frac{-3}{7} = \frac{-3}{49}$; $u_7 = \frac{1}{7}u_6 = \frac{1}{7} \times \frac{-3}{49} = \frac{-3}{343}$.
 - a) Calcul du quatrième terme : le premier terme est u_4 ; le deuxième terme est u_5 ; le troisième terme est u_6 ; le quatrième terme est u_7 . Le terme demandé est donc : $u_7 = \frac{-3}{343}$.
 - b) Le terme de rang 5 est : $u_5 = \frac{-3}{7}$.
 - c) Nous avons calculé que : $u_6 = \frac{-3}{49}$.
- ▶2. La suite u est définie pour $n \ge 2$ par : $u_n = \frac{2^n}{3n}$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du quatrième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 . Le terme demandé est donc : $u_5 = \frac{2^5}{3 \times 5} = \frac{32}{15}$. La solution est $u_5 = \frac{32}{15}$.
 - b) Le terme de rang 5 est u_5 . Ce terme a déjà été calculé, et $u_5 = \frac{32}{15}$.
 - c) On a : $u_6 = \frac{2^6}{3 \times 6} = \frac{64}{18} = \frac{32}{9}$. La solution est donc : $u_6 = \frac{32}{9}$.
- ▶3. La suite (u_n) est définie par récurrence, pour $n \ge 0$, par :

$$\begin{cases} u_0 = 8 \\ \text{Pour tout } n \ge 0 : u_{n+1} = 10u_n. \end{cases}$$

$$u_1 = 10u_0 = 10 \times 8 = 80$$

 $u_2 = 10u_1 = 10 \times 80 = 800$
 $u_3 = 10u_2 = 10 \times 800 = 8000$
 $u_4 = 10u_3 = 10 \times 8000 = 80000$
 $u_5 = 10u_4 = 10 \times 80000 = 800000$
 $u_6 = 10u_5 = 10 \times 800000 = 8000000$

- a) Calcul du quatrième terme : le premier terme est u_0 ; le deuxième terme est u_1 ; le troisième terme est u_2 ; le quatrième terme est u_3 . Le terme demandé est donc : $u_3 = 8000$.
- **b)** Le terme de rang 5 est : $u_5 = 800000$.
- c) Nous avons calculé que : $u_6 = 8000000$.

- ▶1. Selon l'énoncé, le premier terme de u est $u_1 = -9$. Puisque chaque terme (sauf le premier) est égal au quart du précédent, on a : $u_2 = \frac{1}{4}u_1 = \frac{1}{4} \times -9 = \frac{-9}{4}$; $u_3 = \frac{1}{4}u_2 = \frac{1}{4} \times \frac{-9}{4} = \frac{-9}{16}$; $u_4 = \frac{1}{4}u_3 = \frac{1}{4} \times \frac{-9}{16} = \frac{-9}{64}$; $u_5 = \frac{1}{4}u_4 = \frac{1}{4} \times \frac{-9}{64} = \frac{-9}{256}$.
 - a) Calcul du cinquième terme : le premier terme est u_1 ; le deuxième terme est u_2 ; le troisième terme est u_3 ; le quatrième terme est u_4 ; le cinquième terme est u_5 . Le terme demandé est donc : $u_5 = \frac{-9}{256}$.
 - **b)** Le terme de rang 5 est : $u_5 = \frac{-9}{256}$
 - c) Nous avons calculé que : $u_3 = \frac{-9}{16}$.
- ▶2. La suite (u_n) est définie pour $n \ge 1$ par : $u_n = n 4$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du cinquième terme : le premier terme est u_1 ; le deuxième terme est u_2 ; le troisième terme est u_3 ; le quatrième terme est u_4 ; le cinquième terme est u_5 . Le terme demandé est donc : $u_5 = 5 4 = 1$. La solution est $u_5 = 1$.

- b) Le terme de rang 5 est u_5 . Ce terme a déjà été calculé, et $u_5 = 1$.
- c) On a : $u_3 = 3 4 = -1$. La solution est donc : $u_3 = -1$.
- ▶3. La suite (u_n) est définie par récurrence, pour $n \ge 0$, par :

$$\begin{cases} u_0 = 5 \\ \text{Pour tout } n \ge 0 : u_{n+1} = \frac{2}{3}u_n + 4. \end{cases}$$

$$u_{1} = \frac{2}{3}u_{0} + 4 = \frac{2}{3} \times 5 + 4 = \frac{10}{3} + \frac{4 \times 3}{3} = \frac{10 + 12}{3} = \frac{22}{3}$$

$$u_{2} = \frac{2}{3}u_{1} + 4 = \frac{2}{3} \times \frac{22}{3} + 4 = \frac{44}{9} + \frac{4 \times 9}{9} = \frac{44 + 36}{9} = \frac{80}{9}$$

$$u_{3} = \frac{2}{3}u_{2} + 4 = \frac{2}{3} \times \frac{80}{9} + 4 = \frac{160}{27} + \frac{4 \times 27}{27} = \frac{160 + 108}{27} = \frac{268}{27}$$

$$u_{4} = \frac{2}{3}u_{3} + 4 = \frac{2}{3} \times \frac{268}{27} + 4 = \frac{536}{81} + \frac{4 \times 81}{81} = \frac{536 + 324}{81} = \frac{860}{81}$$

$$u_{5} = \frac{2}{3}u_{4} + 4 = \frac{2}{3} \times \frac{860}{81} + 4 = \frac{1720}{243} + \frac{4 \times 243}{243} = \frac{1720 + 972}{243} = \frac{2692}{243}$$

- a) Calcul du cinquième terme : le premier terme est u_0 ; le deuxième terme est u_1 ; le troisième terme est u_2 ; le quatrième terme est u_3 ; le cinquième terme est u_4 . Le terme demandé est donc : $u_4 = \frac{860}{81}$.
- **b)** Le terme de rang 5 est : $u_5 = \frac{2692}{243}$.
- c) Nous avons calculé que : $u_3 = \frac{268}{27}$.

- ▶1. Selon l'énoncé, le premier terme de u est $u_2 = 1$. Puisque chaque terme (sauf le premier) est égal au terme précédent auquel on ajoute 5, on a : $u_3 = u_2 + 5 = 1 + 5 = 6$; $u_4 = u_3 + 5 = 6 + 5 = 11$; $u_5 = u_4 + 5 = 11 + 5 = 16$; $u_6 = u_5 + 5 = 16 + 5 = 21$; $u_7 = u_6 + 5 = 21 + 5 = 26$; $u_8 = u_7 + 5 = 26 + 5 = 31$.
 - a) Calcul du septième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 ; le cinquième terme est u_6 ; le sixième terme est u_7 ; le septième terme est u_8 . Le terme demandé est donc : $u_8 = 31$.
 - **b)** Le terme de rang 3 est : $u_3 = 6$.
 - c) Nous avons calculé que : $u_4 = 11$.
- ▶2. La suite $(u_n)_{n\in\mathbb{N}}$ est définie pour $n\geq 0$ par : $u_n=n-9$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du septième terme : le premier terme est u_0 ; le deuxième terme est u_1 ; le troisième terme est u_2 ; le quatrième terme est u_3 ; le cinquième terme est u_4 ; le sixième terme est u_5 ; le septième terme est u_6 . Le terme demandé est donc : $u_6 = 6 9 = -3$. La solution est $u_6 = -3$.
 - b) Le terme de rang 3 est u_3 . Le terme demandé est donc : $u_3 = 3 9 = -6$. La solution est donc : $u_3 = -6$.
 - c) On a : $u_4 = 4 9 = -5$. La solution est donc : $u_4 = -5$.
- ▶3. La suite (u_n) est définie par récurrence, pour $n \ge 2$, par :

$$\begin{cases} u_2 = 10 \\ \text{Pour tout } n \ge 2 : u_{n+1} = \frac{1}{10} u_n. \end{cases}$$

$$u_3 = \frac{1}{10}u_2 = \frac{1}{10} \times 10 = \frac{10}{10} = 1$$

$$u_4 = \frac{1}{10}u_3 = \frac{1}{10} \times 1 = \frac{1}{10}$$

$$u_5 = \frac{1}{10}u_4 = \frac{1}{10} \times \frac{1}{10} = \frac{1}{100}$$

$$u_6 = \frac{1}{10}u_5 = \frac{1}{10} \times \frac{1}{100} = \frac{1}{1000}$$

$$u_7 = \frac{1}{10}u_6 = \frac{1}{10} \times \frac{1}{1000} = \frac{1}{10000}$$

$$u_8 = \frac{1}{10}u_7 = \frac{1}{10} \times \frac{1}{10000} = \frac{1}{100000}$$

- a) Calcul du septième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 ; le cinquième terme est u_6 ; le sixième terme est u_7 ; le septième terme est u_8 . Le terme demandé est donc : $u_8 = \frac{1}{100000}$.
- **b)** Le terme de rang 3 est : $u_3 = 1$.
- c) Nous avons calculé que : $u_4 = \frac{1}{10}$

- ▶1. Selon l'énoncé, le premier terme de (u_n) est $u_3 = 9$. Puisque chaque terme (sauf le premier) est égal à l'opposé du précédent, on a : $u_4 = -u_3 = -9$; $u_5 = -u_4 = 9$; $u_6 = -u_5 = -9$; $u_7 = -u_6 = 9$; $u_8 = -u_7 = -9$; $u_9 = -u_8 = 9$.
 - a) Calcul du septième terme : le premier terme est u_3 ; le deuxième terme est u_4 ; le troisième terme est u_5 ; le quatrième terme est u_6 ; le cinquième terme est u_7 ; le sixième terme est u_8 ; le septième terme est u_9 . Le terme demandé est donc : $u_9 = 9$.
 - b) Le terme de rang 4 est : $u_4 = -9$.
 - c) Nous avons calculé que : $u_5 = 9$.
- ▶2. La suite u est définie pour $n \ge 2$ par : $u_n = \frac{1}{10}n 3$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du septième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 ; le cinquième terme est u_6 ; le sixième terme est u_7 ; le septième terme est u_8 . Le terme demandé est donc : $u_8 = \frac{1}{10} \times 8 - 3 = \frac{8}{10} - \frac{3 \times 10}{10} = \frac{8 - 30}{10} = \frac{-11}{5}$. La solution est $u_8 = \frac{-11}{5}$.
 - **b)** Le terme de rang 4 est u_4 . Le terme demandé est donc : $u_4 = \frac{1}{10} \times 4 3 = \frac{4}{10} \frac{3 \times 10}{10} = \frac{4 30}{10} = \frac{-13}{5}$. La solution est donc : $u_4 = \frac{-13}{5}$. c) On a : $u_5 = \frac{1}{10} \times 5 - 3 = \frac{5}{10} - \frac{3 \times 10}{10} = \frac{5 - 30}{10} = \frac{-5}{2}$. La solution est donc : $u_5 = \frac{-5}{2}$.
- ▶3. La suite u est définie par récurrence, pour $n \ge 1$, par :

$$\begin{cases} u_1 = -3 \\ \text{Pour tout } n \ge 1 : u_{n+1} = \frac{3}{5}u_n. \end{cases}$$

$$u_{2} = \frac{3}{5}u_{1} = \frac{3}{5} \times (-3) = \frac{-9}{5}$$

$$u_{3} = \frac{3}{5}u_{2} = \frac{3}{5} \times \frac{-9}{5} = \frac{-27}{25}$$

$$u_{4} = \frac{3}{5}u_{3} = \frac{3}{5} \times \frac{-27}{25} = \frac{-81}{125}$$

$$u_{5} = \frac{3}{5}u_{4} = \frac{3}{5} \times \frac{-81}{125} = \frac{-243}{625}$$

$$u_{6} = \frac{3}{5}u_{5} = \frac{3}{5} \times \frac{-243}{625} = \frac{-729}{3125}$$

$$u_{7} = \frac{3}{5}u_{6} = \frac{3}{5} \times \frac{-729}{3125} = \frac{-2187}{15625}$$

- a) Calcul du septième terme : le premier terme est u_1 ; le deuxième terme est u_2 ; le troisième terme est u_3 ; le quatrième terme est u_4 ; le cinquième terme est u_5 ; le sixième terme est u_6 ; le septième terme est u_7 . Le terme demandé est donc : $u_7 = \frac{-2187}{15625}$.
- **b)** Le terme de rang 4 est : $u_4 = \frac{-81}{125}$.
- c) Nous avons calculé que : $u_5 = \frac{-243}{625}$.

- ▶1. Selon l'énoncé, le premier terme de u est $u_0 = 4$. Puisque chaque terme (sauf le premier) est égal à l'inverse du précédent, on a : $u_1 = \frac{1}{u_0} = \frac{1}{4}$; $u_2 = \frac{1}{u_1} = \frac{1}{\frac{1}{4}} = 4$; $u_3 = \frac{1}{u_2} = \frac{1}{4}$; $u_4 = \frac{1}{u_3} = \frac{1}{\frac{1}{4}} = 4$; $u_5 = \frac{1}{u_4} = \frac{1}{4}$; $u_6 = \frac{1}{u_5} = \frac{1}{\frac{1}{4}} = 4$.
 - a) Calcul du sixième terme : le premier terme est u_0 ; le deuxième terme est u_1 ; le troisième terme est u_2 ; le quatrième terme est u_3 ; le cinquième terme est u_4 ; le sixième terme est u_5 . Le terme demandé est donc : $u_5 = \frac{1}{4}$.
 - **b)** Le terme de rang 3 est : $u_3 = \frac{1}{4}$.
 - c) Nous avons calculé que : $u_6 = 4$.
- ▶2. La suite (u_n) est définie pour $n \ge 2$ par : $u_n = \frac{4^n}{5n}$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du sixième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 ; le cinquième terme est u_6 ; le sixième terme est u_7 . Le terme demandé est donc : $u_7 = \frac{4^7}{5 \times 7} = \frac{16384}{35}$. La solution est $u_7 = \frac{16384}{35}$.
 - b) Le terme de rang 3 est u_3 . Le terme demandé est donc : $u_3 = \frac{4^3}{5 \times 3} = \frac{64}{15}$. La solution est donc : $u_3 = \frac{64}{15}$.
 - c) On a : $u_6 = \frac{4^6}{5 \times 6} = \frac{4096}{30} = \frac{2048}{15}$. La solution est donc : $u_6 = \frac{2048}{15}$.
- ▶3. La suite (u_n) est définie par récurrence, pour $n \ge 0$, par :

$$\begin{cases} u_0 = -7 \\ \text{Pour tout } n \ge 0 : u_{n+1} = u_n - 1. \end{cases}$$

$$u_1 = u_0 - 1 = -7 - 1 = -8$$

$$u_2 = u_1 - 1 = -8 - 1 = -9$$

$$u_3 = u_2 - 1 = -9 - 1 = -10$$

$$u_4 = u_3 - 1 = -10 - 1 = -11$$

$$u_5 = u_4 - 1 = -11 - 1 = -12$$

$$u_6 = u_5 - 1 = -12 - 1 = -13$$

- a) Calcul du sixième terme : le premier terme est u_0 ; le deuxième terme est u_1 ; le troisième terme est u_2 ; le quatrième terme est u_3 ; le cinquième terme est u_4 ; le sixième terme est u_5 . Le terme demandé est donc : $u_5 = -12$.
- b) Le terme de rang 3 est : $u_3 = -10$.
- c) Nous avons calculé que : $u_6 = -13$.