Ex 1:

a)
$$f(x)=ax^2+ax-6a=a(x^2+x-6)=a((x+0.5)^2-0.25-6)=a(x+0.5)^2-6.25a$$

b) On factorise le trinôme.

$$f(x)=a(x+3)(x-2)$$

$\int (x) - u(x+3)(x-2)$								
x	$-\infty$	-3		2		+∞		
Signe de $x+3$	-	0	+		+			
Signe de <i>x-2</i>	-		-	0	+			
Signe de $(x+3)(x-2)$	+	0	-	0	+			
Signe de $a(x+3)(x-2)$	Signe de	a 0	Signe de	e-a 0	Signe de <i>a</i>			

Ainsi, pour
$$a > 0$$
,) $f(x) \ge 0$ 0 sur] $-\infty$; -3] U [2; + ∞ [$f(x) < 0$ sur] - 3; 2 [

Pour
$$a < 0$$
, $f(x) \le 0$ 0 sur] $-\infty$; -3] U [2; $+\infty$ [$f(x) > 0$ sur] - 3; 2 [.

c)
$$f(x)=a(x+0.5)^2-6.25a$$

f est de la forme $f(x)=a(x-\alpha)^2+\beta$ avec a>0, $\alpha=-0.5$ et $\beta=-6.25$ a

On a donc le tableau de variations suivant :

F est donc croissante sur] - 0,5; $+\infty$

Ex 2:

1°) On compare les coefficients directeurs.

Pour (AB):
$$a = \frac{2 - (-4)}{5 - 1} = \frac{6}{4} = 1,5$$

Pour (
$$\Delta$$
): $a' = 1.5$

Les deux droites ont le même coefficient directeur, elles sont donc parallèles. VRAI

2°) On calcule le discriminant du trinôme $-x^2 + x - 1$.

 $\Delta = -3$

 Δ < 0 donc le trinôme est du signe de a (ici a = -1) pour tout x réel.

Ainsi, pour tout x réel, $-x^2 + x - 1 < 0$.

Donc, l'inéquation - $x^2 + x - 1 > 0$ n'a aucune solution réelle. VRAI

3°) On étudie le signe de la différence :

$$f(x)-g(x)=x^{2}+7x-6$$

$$\Delta = 73$$

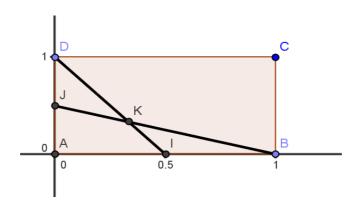
$$x_{1} = \frac{-7-\sqrt{73}}{2} \approx -7,77 \text{ et } x_{2} = \frac{-7+\sqrt{73}}{2} \approx 0,77$$

Le trinôme étant du signe de *a* à l'extérieur de l'intervalle formé par les racines, on a le tableau de signes suivant :

.x	$-\infty$	<i>x</i> ₁	X_2	+∞	
Signe de $f(x)$ - $g(x)$	+	0	- 0	+	
Position	C_f dessus	C_f d	lessous	C_f dessus	

 $x_2 < 1$, donc C_f au-dessus de C_a sur [1;2]. VRAI

Ex 3



Dans le repère $(A; \overrightarrow{AB}; \overrightarrow{AD})$, A(0; 0), B(1; 0), C(1; 1) et D(0; 1)

2°) I milieu de [AB] I (0,5;0)

 $\vec{D}I(0,5;-1)$ est un vecteur directeur de (DI).

(DI) a une équation de la forme ax + by + c = 0 avec -b = 0.5 et a=-1.

D'où : -x - 0.5y + c = 0

D (0; 1) est sur (DI) donc: -0.5 + c = 0

c = 0.5

(DI) a pour équation : -x - 0.5y + 0.5 = 0

ou 2x + y - 1 = 0

C'est à dire : 2x + y = 1

3°) J milieu de [AD], J (0; 0,5)

 $M(x;y) \in (BJ) \Leftrightarrow \overrightarrow{BM}(x-1;y)$ et $\overrightarrow{BJ}(-1;0,5)$ colinéaires

 \Leftrightarrow 0,5(x-1)=-y

 \Leftrightarrow 0,5 x + y - 0,5 = 0

 $\Leftrightarrow x+2y=1$

4°) Les coordonnées du point K, intersection de (BJ) et (DI), sont solutions du système :

x + 2y = 1

2x + y = 1

Les solutions sont $x = \frac{1}{3}$ et $y = \frac{1}{3}$

Ainsi, $K(\frac{1}{3}; \frac{1}{3})$.

5°) $\vec{AK}(\frac{1}{3}; \frac{1}{3})$ et $\vec{AC}(1; 1)$

Ainsi, $\vec{AK} = \frac{1}{3}\vec{AC}$, les deux vecteurs sont colinéaires, les points A, K et C sont alignés.

6°) O est le milieu de [AC] donc $\vec{AC} = 2\vec{AO}$ d'où $\vec{AK} = \frac{2}{3}\vec{AO}$

7°) $\vec{IJ}(-0.5;0.5)$ donc les parallèle à (IJ) ont des équations de la forme 0.5x+0.5y+c'=0 c'est à dire x+y=constante=a+b

Entrée : Saisir a et b

<u>Traitement</u>: c prend la valeur a + b

Sortie : « Une équation cartésienne de la parallèle à (IJ) contenant le point de coordonnées (a ; b) est : x + y = c»

Ex 4:

On pose AC = x d'où BC = 20 - x

D'après le théorème de Pythagore : $AC^2 + BC^2 = AB^2$

C'est à dire
$$x^2 + (20 - x)^2 = 169$$

 $\Leftrightarrow 2x^2 - 40x + 231 = 0$
 $\Delta < 0$ il n'y a pas de solution.
Il est impossible que le triangle soit rectangle en C.

Bonus:

ABC rectangle en A

$$\Leftrightarrow x^2 + 169 = (20 - x)^2$$

$$\Leftrightarrow -40 x = -231$$

$$\Leftrightarrow x = \frac{231}{40}$$