Corrigé de l'exercice 1

- ▶1. Selon l'énoncé, le premier terme de (u_n) est $u_2 = 9$. Puisque chaque terme (sauf le premier) est égal à l'opposé du précédent, on a : $u_3 = -u_2 = -9$; $u_4 = -u_3 = 9$; $u_5 = -u_4 = -9$.
 - a) Calcul du quatrième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 . Le terme demandé est donc : $u_5 = -9$.
 - **b)** Le terme de rang 4 est : $u_4 = 9$.
 - c) Nous avons calculé que : $u_3 = -9$.
- ▶2. La suite (u_n) est définie pour $n \ge 2$ par : $u_n = \frac{3}{5}n 5$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du quatrième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 . Le terme demandé est donc : $u_5 = \frac{3}{5} \times 5 5 = \frac{15}{5} \frac{5 \times 5}{5} = \frac{15 25}{5} = -2$. La solution est $u_5 = -2$.
 - **b)** Le terme de rang 4 est u_4 . Le terme demandé est donc : $u_4 = \frac{3}{5} \times 4 5 = \frac{12}{5} \frac{5 \times 5}{5} = \frac{12 25}{5} = \frac{13}{-5}$. La solution est donc : $u_4 = \frac{13}{-5}$.
 - c) On a: $u_3 = \frac{3}{5} \times 3 5 = \frac{9}{5} \frac{5 \times 5}{5} = \frac{9 25}{5} = \frac{16}{-5}$. La solution est donc: $u_3 = \frac{16}{-5}$.
- ▶3. La suite (u_n) est définie par récurrence, pour $n \ge 2$, par :

$$\begin{cases} u_2 = 0 \\ \text{Pour tout } n \geqslant 2 : u_{n+1} = 5u_n - 1. \end{cases}$$

$$u_3 = 5u_2 - 1 = 5 \times 0 - 1 = -1$$

 $u_4 = 5u_3 - 1 = 5 \times (-1) - 1 = -6$
 $u_5 = 5u_4 - 1 = 5 \times (-6) - 1 = -31$

- a) Calcul du quatrième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 . Le terme demandé est donc : $u_5 = -31$.
- **b)** Le terme de rang 4 est : $u_4 = -6$.
- c) Nous avons calculé que : $u_3 = -1$.

Corrigé de l'exercice 2

- ▶1. Selon l'énoncé, le premier terme de u est $u_0 = 1$. Puisque chaque terme (sauf le premier) est égal à l'inverse du précédent, on a : $u_1 = \frac{1}{u_0} = \frac{1}{1}$; $u_2 = \frac{1}{u_1} = \frac{1}{1} = 1$; $u_3 = \frac{1}{u_2} = \frac{1}{1}$; $u_4 = \frac{1}{u_3} = \frac{1}{1} = 1$; $u_5 = \frac{1}{u_4} = \frac{1}{1}$; $u_6 = \frac{1}{u_5} = \frac{1}{1} = 1$.
 - a) Calcul du septième terme : le premier terme est u_0 ; le deuxième terme est u_1 ; le troisième terme est u_2 ; le quatrième terme est u_3 ; le cinquième terme est u_4 ; le sixième terme est u_5 ; le septième terme est u_6 . Le terme demandé est donc : $u_6 = 1$.
 - b) Le terme de rang 4 est : $u_4 = 1$.
 - c) Nous avons calculé que : $u_6 = 1$.
- ▶2. La suite u est définie pour $n \ge 2$ par : $u_n = \frac{1}{5}n$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du septième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 ; le cinquième terme est u_6 ; le sixième terme est u_7 ; le septième terme est u_8 . Le terme demandé est donc : $u_8 = \frac{1}{5} \times 8 = \frac{8}{5}$. La solution est $u_8 = \frac{8}{5}$.
 - **b)** Le terme de rang 4 est u_4 . Le terme demandé est donc : $u_4 = \frac{1}{5} \times 4 = \frac{4}{5}$. La solution est donc : $u_4 = \frac{4}{5}$.
 - c) On a : $u_6 = \frac{1}{5} \times 6 = \frac{6}{5}$. La solution est donc : $u_6 = \frac{6}{5}$.

▶3. La suite u est définie par récurrence, pour $n \ge 3$, par :

$$\begin{cases} u_3 = 7 \\ \text{Pour tout } n \geqslant 3 : u_{n+1} = \frac{1}{10} u_n. \end{cases}$$

$$u_4 = \frac{1}{10}u_3 = \frac{1}{10} \times 7 = \frac{7}{10}$$

$$u_5 = \frac{1}{10}u_4 = \frac{1}{10} \times \frac{7}{10} = \frac{7}{100}$$

$$u_6 = \frac{1}{10}u_5 = \frac{1}{10} \times \frac{7}{100} = \frac{7}{1000}$$

$$u_7 = \frac{1}{10}u_6 = \frac{1}{10} \times \frac{7}{1000} = \frac{7}{10000}$$

$$u_8 = \frac{1}{10}u_7 = \frac{1}{10} \times \frac{7}{10000} = \frac{7}{100000}$$

$$u_9 = \frac{1}{10}u_8 = \frac{1}{10} \times \frac{7}{100000} = \frac{7}{1000000}$$

- a) Calcul du septième terme : le premier terme est u_3 ; le deuxième terme est u_4 ; le troisième terme est u_5 ; le quatrième terme est u_6 ; le cinquième terme est u_7 ; le sixième terme est u_8 ; le septième terme est u_9 . Le terme demandé est donc : $u_9 = \frac{7}{1000000}$.
- **b)** Le terme de rang 4 est : $u_4 = \frac{7}{10}$.
- c) Nous avons calculé que : $u_6 = \frac{7}{1000}$.

Corrigé de l'exercice 3

- ▶1. Selon l'énoncé, le premier terme de (u_n) est $u_2 = -8$. Puisque chaque terme (sauf le premier) est égal au terme précédent auquel on soustrait 4, on a : $u_3 = u_2 4 = -8 4 = -12$; $u_4 = u_3 4 = -12 4 = -16$; $u_5 = u_4 4 = -16 4 = -20$.
 - a) Calcul du quatrième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 . Le terme demandé est donc : $u_5 = -20$.
 - b) Le terme de rang 5 est : $u_5 = -20$.
 - c) Nous avons calculé que : $u_3 = -12$.
- ▶2. La suite (u_n) est définie pour $n \ge 2$ par : $u_n = \frac{7^n}{7n}$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du quatrième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 . Le terme demandé est donc : $u_5 = \frac{7^5}{7 \times 5} = \frac{16807}{35} = \frac{2401}{5}$. La solution est $u_5 = \frac{2401}{5}$.
 - b) Le terme de rang 5 est u_5 . Ce terme a déjà été calculé, et $u_5 = \frac{2401}{5}$.
 - c) On a : $u_3 = \frac{7^3}{7 \times 3} = \frac{343}{21} = \frac{49}{3}$. La solution est donc : $u_3 = \frac{49}{3}$.
- ▶3. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par récurrence, pour $n \ge 0$, par :

$$\begin{cases} u_0 = -8 \\ \text{Pour tout } n \geqslant 0 : u_{n+1} = u_n - 5. \end{cases}$$

$$u_1 = u_0 - 5 = -8 - 5 = -13$$

$$u_2 = u_1 - 5 = -13 - 5 = -18$$

$$u_3 = u_2 - 5 = -18 - 5 = -23$$

$$u_4 = u_3 - 5 = -23 - 5 = -28$$

$$u_5 = u_4 - 5 = -28 - 5 = -33$$

- a) Calcul du quatrième terme : le premier terme est u_0 ; le deuxième terme est u_1 ; le troisième terme est u_2 ; le quatrième terme est u_3 . Le terme demandé est donc : $u_3 = -23$.
- b) Le terme de rang 5 est : $u_5 = -33$.
- c) Nous avons calculé que : $u_3 = -23$.

Corrigé de l'exercice 4

- ▶1. Selon l'énoncé, le premier terme de $(u_n)_{n \in \mathbb{N}}$ est $u_0 = -1$. Puisque chaque terme (sauf le premier) est égal au terme précédent auquel on ajoute 6, on a : $u_1 = u_0 + 6 = -1 + 6 = 5$; $u_2 = u_1 + 6 = 5 + 6 = 11$; $u_3 = u_2 + 6 = 11 + 6 = 17$; $u_4 = u_3 + 6 = 17 + 6 = 23$; $u_5 = u_4 + 6 = 23 + 6 = 29$; $u_6 = u_5 + 6 = 29 + 6 = 35$.
 - a) Calcul du cinquième terme : le premier terme est u_0 ; le deuxième terme est u_1 ; le troisième terme est u_2 ; le quatrième terme est u_3 ; le cinquième terme est u_4 . Le terme demandé est donc : $u_4 = 23$.
 - **b)** Le terme de rang 3 est : $u_3 = 17$.
 - c) Nous avons calculé que : $u_6 = 35$.
- ▶2. La suite u est définie pour $n \ge 2$ par : $u_n = -3n^2 + 5n + 5$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du cinquième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 ; le cinquième terme est u_6 . Le terme demandé est donc : $u_6 = -3 \times 6^2 + 5 \times 6 + 5 = -108 + 30 + 5 = -73$. La solution est $u_6 = -73$.
 - b) Le terme de rang 3 est u_3 . Le terme demandé est donc : $u_3 = -3 \times 3^2 + 5 \times 3 + 5 = -27 + 15 + 5 = -7$. La solution est donc : $u_3 = -7$.
 - c) Ce terme a déjà été calculé, et $u_6 = -73$.
- ▶3. La suite (u_n) est définie par récurrence, pour $n \ge 2$, par :

$$\begin{cases} u_2 = -9 \\ \text{Pour tout } n \geqslant 2 : u_{n+1} = \frac{1}{3}u_n. \end{cases}$$

$$u_3 = \frac{1}{3}u_2 = \frac{1}{3} \times (-9) = \frac{-9}{3} = -3.0$$

$$u_4 = \frac{1}{3}u_3 = \frac{1}{3} \times (-3.0) = \frac{-3.0}{3} = -1.0$$

$$u_5 = \frac{1}{3}u_4 = \frac{1}{3} \times (-1.0) = \frac{-1.0}{3}$$

$$u_6 = \frac{1}{3}u_5 = \frac{1}{3} \times \frac{-1.0}{3.0} = \frac{-1.0}{9.0}$$

- a) Calcul du cinquième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 ; le cinquième terme est u_6 . Le terme demandé est donc : $u_6 = \frac{-1.0}{9.0}$.
- b) Le terme de rang 3 est : $u_3 = -3.0$.
- c) Nous avons calculé que : $u_6 = \frac{-1.0}{9.0}$.

Corrigé de l'exercice 5

▶1. Selon l'énoncé, le premier terme de u est $u_2=2$. Puisque chaque terme (sauf le premier) est égal à neuf fois le précédent, on a : $u_3=9u_2=9\times 2=\frac{18}{1}=18$; $u_4=9u_3=9\times 18=\frac{162}{1}=162$; $u_5=9u_4=9\times 162=\frac{1458}{1}=1458$; $u_6=9u_5=9\times 1458=\frac{13122}{1}=13122$; $u_7=9u_6=9\times 13122=\frac{118098}{1}=118098$; $u_8=9u_7=9\times 118098=\frac{1062882}{1}=1062882$.

- a) Calcul du septième terme : le premier terme est u_2 ; le deuxième terme est u_3 ; le troisième terme est u_4 ; le quatrième terme est u_5 ; le cinquième terme est u_6 ; le sixième terme est u_7 ; le septième terme est u_8 . Le terme demandé est donc : $u_8 = 1062882$.
- **b)** Le terme de rang 6 est : $u_6 = 13122$.
- c) Nous avons calculé que : $u_4 = 162$.
- ▶2. La suite u est définie pour $n \ge 3$ par : $u_n = \frac{1}{4}n$. Elle est donc définie par son terme général : pour calculer un terme de rang n, on peut calculer directement l'image de n par la suite.
 - a) Calcul du septième terme : le premier terme est u_3 ; le deuxième terme est u_4 ; le troisième terme est u_5 ; le quatrième terme est u_6 ; le cinquième terme est u_7 ; le sixième terme est u_8 ; le septième terme est u_9 . Le terme demandé est donc : $u_9 = \frac{1}{4} \times 9 = \frac{9}{4}$. La solution est $u_9 = \frac{9}{4}$.
 - b) Le terme de rang 6 est u_6 . Le terme demandé est donc : $u_6 = \frac{1}{4} \times 6 = \frac{6}{4} = \frac{3}{2}$. La solution est donc : $u_6 = \frac{3}{2}$.
 - c) On a : $u_4 = \frac{1}{4} \times 4 = \frac{4}{4} = 1.0$. La solution est donc : $u_4 = 1.0$.
- ▶3. La suite u est définie par récurrence, pour $n \ge 1$, par :

$$\begin{cases} u_1 = -3 \\ \text{Pour tout } n \geqslant 1 : u_{n+1} = \frac{1}{3}u_n. \end{cases}$$

$$u_{2} = \frac{1}{3}u_{1} = \frac{1}{3} \times (-3) = \frac{-3}{3} = -1.0$$

$$u_{3} = \frac{1}{3}u_{2} = \frac{1}{3} \times (-1.0) = \frac{-1.0}{3}$$

$$u_{4} = \frac{1}{3}u_{3} = \frac{1}{3} \times \frac{-1.0}{3.0} = \frac{-1.0}{9.0}$$

$$u_{5} = \frac{1}{3}u_{4} = \frac{1}{3} \times \frac{-1.0}{9.0} = \frac{-1.0}{27.0}$$

$$u_{6} = \frac{1}{3}u_{5} = \frac{1}{3} \times \frac{-1.0}{27.0} = \frac{-1.0}{81.0}$$

$$u_{7} = \frac{1}{3}u_{6} = \frac{1}{3} \times \frac{-1.0}{81.0} = \frac{-1.0}{243.0}$$

- a) Calcul du septième terme : le premier terme est u_1 ; le deuxième terme est u_2 ; le troisième terme est u_3 ; le quatrième terme est u_4 ; le cinquième terme est u_5 ; le sixième terme est u_6 ; le septième terme est u_7 . Le terme demandé est donc : $u_7 = \frac{-1.0}{243.0}$.
- **b)** Le terme de rang 6 est : $u_6 = \frac{-1.0}{81.0}$.
- c) Nous avons calculé que : $u_4 = \frac{-1.0}{9.0}$.