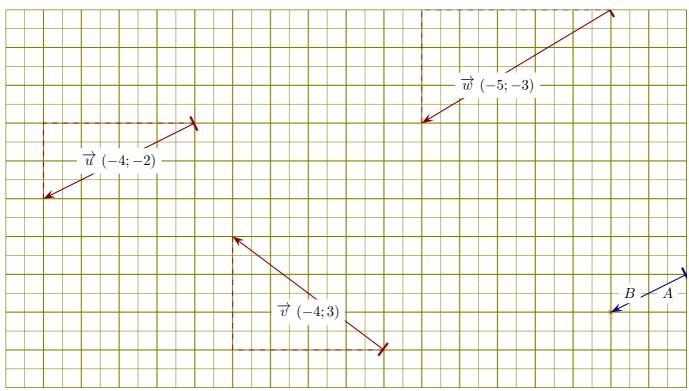
Corrigé de l'exercice 1



On se place dans un repère orthonormé et on considère les vecteurs \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} ci-dessous.

▶1. Lire les coordonnées de chacun des vecteurs \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} .

Un petit rappel : l'abscisse d'un vecteur est la différence d'abscisse entre le fin et le début du vecteur. Concernant le vecteur \overrightarrow{u} , son abscisse est -4. On lit également son ordonnée : -4. Donc les coordonnées de \overrightarrow{u} sont (-4,-2). Des pointillés ont été ajoutés sur la figure pour faciliter la lecture des coordonnées. De même, les coordonnées de \overrightarrow{v} sont (-4,3) et les coordonnées de \overrightarrow{w} sont (-5,-3).

▶2. Placer un point B de sorte que le vecteur \overrightarrow{AB} soit égal à $0.5 \times \overrightarrow{u}$.

Le plus simple pour répondre à cette question est de calculer les coordonnées du vecteur $0.5 \times \overrightarrow{u}$. Cela se fait en multipliant les coordonnées de \overrightarrow{u} par 0.5, ce qui donne comme résultat (-2.0; -1.0). En partant du point A et en respectant ces coordonnées, on dessine un vecteur (en bleu sur la figure ci-dessus) qui indique l'emplacement du point B.

▶3. Calculer les normes de chacun des vecteurs \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} .

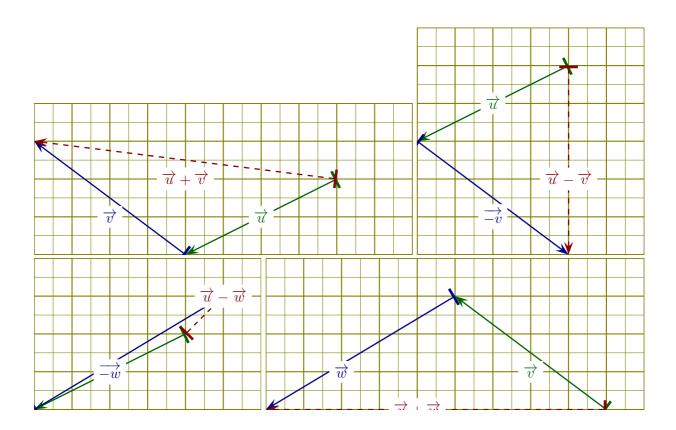
$$\|\overrightarrow{u}\| = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}.$$

De la même manière, on obtient : $\|\overrightarrow{v}\| = \sqrt{(-4)^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$ et

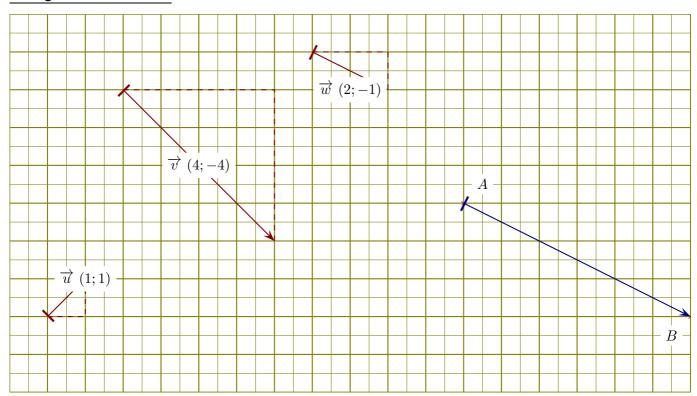
$$\|\overrightarrow{w}\| = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34}$$

▶4. Dessiner des représentants des vecteurs $\overrightarrow{u} + \overrightarrow{v}$, $\overrightarrow{u} - \overrightarrow{v}$, $\overrightarrow{u} - \overrightarrow{w}$ et $\overrightarrow{v} + \overrightarrow{w}$.

Pour dessiner les sommes ou différences de vecteurs, il faut les mettre "bouts à bouts", comme sur les figures qui suivent :



Corrigé de l'exercice 2



On se place dans un repère orthonormé et on considère les vecteurs \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} ci-dessous.

▶1. Lire les coordonnées de chacun des vecteurs \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} . Un petit rappel : l'abscisse d'un vecteur est la différence d'abscisse entre le fin et le début du vecteur. Concernant le vecteur \overrightarrow{u} , son abscisse est 1. On lit également son ordonnée : 1. Donc les coordonnées de \overrightarrow{u} sont (1,1). Des pointillés ont été ajoutés sur la figure pour faciliter la lecture des coordonnées. De même, les coordonnées de \overrightarrow{v} sont (4,-4) et les coordonnées de \overrightarrow{w} sont (2,-1).

▶2. Placer un point B de sorte que le vecteur \overrightarrow{AB} soit égal à $3 \times \overrightarrow{w}$.

Le plus simple pour répondre à cette question est de calculer les coordonnées du vecteur $3 \times \overrightarrow{w}$. Cela se fait en multipliant les coordonnées de \overrightarrow{w} par 3, ce qui donne comme résultat (6; -3). En partant du point A et en respectant ces coordonnées, on dessine un vecteur (en bleu sur la figure ci-dessus) qui indique l'emplacement du point B.

▶3. Calculer les normes de chacun des vecteurs \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} .

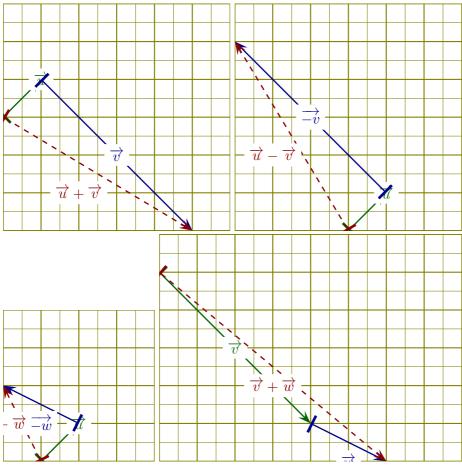
$$\|\overrightarrow{u}\| = \sqrt{(1)^2 + (1)^2} = \sqrt{1+1} = \sqrt{2}.$$

De la même manière, on obtient : $\|\vec{v}\| = \sqrt{(4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2}$ et

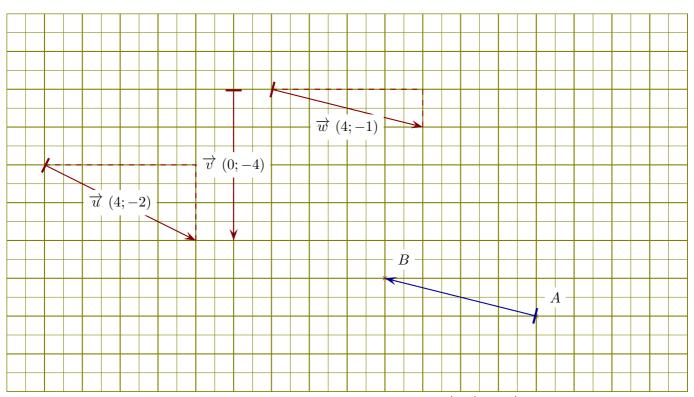
$$\|\overrightarrow{w}\| = \sqrt{(2)^2 + (-1)^2} = \sqrt{4+1} = \sqrt{5}.$$

▶4. Dessiner des représentants des vecteurs $\overrightarrow{u} + \overrightarrow{v}$, $\overrightarrow{u} - \overrightarrow{v}$, $\overrightarrow{u} - \overrightarrow{w}$ et $\overrightarrow{v} + \overrightarrow{w}$.

Pour dessiner les sommes ou différences de vecteurs, il faut les mettre "bouts à bouts", comme sur les figures qui suivent :



Corrigé de l'exercice 3



On se place dans un repère orthonormé et on considère les vecteurs \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} ci-dessous.

▶1. Lire les coordonnées de chacun des vecteurs \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} .

Un petit rappel : l'abscisse d'un vecteur est la différence d'abscisse entre le fin et le début du vecteur. Concernant le vecteur \overrightarrow{u} , son abscisse est 4. On lit également son ordonnée : 4. Donc les coordonnées de \overrightarrow{u} sont (4,-2). Des pointillés ont été ajoutés sur la figure pour faciliter la lecture des coordonnées. De même, les coordonnées de \overrightarrow{v} sont (0,-4) et les coordonnées de \overrightarrow{w} sont (4,-1).

▶2. Placer un point B de sorte que le vecteur \overrightarrow{AB} soit égal à $-1 \times \overrightarrow{w}$.

Le plus simple pour répondre à cette question est de calculer les coordonnées du vecteur $-1 \times \overrightarrow{w}$. Cela se fait en multipliant les coordonnées de \overrightarrow{w} par -1, ce qui donne comme résultat (-4;1). En partant du point A et en respectant ces coordonnées, on dessine un vecteur (en bleu sur la figure ci-dessus) qui indique l'emplacement du point B.

▶3. Calculer les normes de chacun des vecteurs \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} .

$$\|\overrightarrow{u}\| = \sqrt{(4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}.$$

De la même manière, on obtient : $\|\overrightarrow{v}\| = \sqrt{(0)^2 + (-4)^2} = \sqrt{0 + 16} = \sqrt{16} = 4$ et

$$\|\overrightarrow{w}\| = \sqrt{(4)^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17}.$$

▶4. Dessiner des représentants des vecteurs $\overrightarrow{u} + \overrightarrow{v}$, $\overrightarrow{u} - \overrightarrow{v}$, $\overrightarrow{u} - \overrightarrow{w}$ et $\overrightarrow{v} + \overrightarrow{w}$.

Pour dessiner les sommes ou différences de vecteurs, il faut les mettre "bouts à bouts", comme sur les figures qui suivent :

