Le sujet comporte 8 pages numérotées de 2 à 9

Il faut choisir et réaliser seulement trois des quatre exercices proposés

EXERCICE I

Donner les réponses à cet exercice dans le cadre prévu à la page 3

Une enquête réalisée dans le Centre de Documentation et d'Information (CDI) d'un lycée donne les résultats suivants :

60% des élèves fréquentant le CDI sont des filles et, parmi elles, 40% sont en seconde, 30% en première et le reste en terminale. Parmi les garçons fréquentant le CDI, 50% sont en seconde, 20% en première et le reste en terminale.

Partie A

On interroge au hasard un élève fréquentant le CDI et on considère les événements suivants :

F: "l'élève interrogé est une fille",

G: "l'élève interrogé est un garçon",

 \boldsymbol{S} : "l'élève interrogé est en seconde ",

P: "l'élève interrogé est en première",

T: "l'élève interrogé est en terminale".

- I-A-1- Compléter l'arbre donné avec les probabilités correspondantes.
- I-A-2- Donner la probabilité P_1 que l'élève interrogé soit une fille de seconde.
- I-A-3- Donner la probabilité P_2 que l'élève interrogé soit en seconde.
- I-A-4- L'élève interrogé est en seconde. Déterminer la probabilité P_3 que ce soit une fille. Justifier la réponse. Puis donner une valeur approchée à 10^{-4} près de P_3 .
- I-A-5- L'élève interrogé n'est pas en seconde. Donner une valeur approchée à 10^{-4} près de la probabilité P_4 que ce soit un garçon.

Partie B

Durant une pause, le CDI accueille n élèves. On note X la variable aléatoire représentant le nombre de filles parmi ces n élèves.

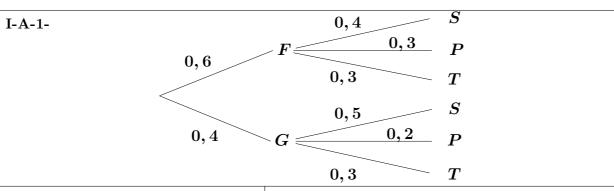
- I-B-1- X suit une loi binomiale de paramètres n et p. Donner la valeur de p.
- **I-B-2-** Donner, en fonction de n, la probabilité P_5 qu'il n'y ait aucune fille.
- I-B-3- Donner, en fonction de n, la probabilité P_6 qu'il y ait au moins une fille.
- I-B-4- Déterminer le nombre minimal n_0 d'élèves accueillis au CDI durant cette pause pour que la probabilité qu'il y ait au moins une fille soit supérieure à 0,99. Détailler les calculs.

Partie C

On rappelle que, d'après l'enquête, la proportion de filles fréquentant le CDI est égale à 0, 6.

- I-C-1- Soit F la variable aléatoire représentant la fréquence de filles dans un échantillon de ${\bf 100}$ élèves pris au hasard, fréquentant le CDI. On admet que F suit une loi normale. Déterminer l'intervalle de fluctuation asymptotique I au seuil de ${\bf 95\%}$ de F. Les valeurs numériques des bornes de I seront arrondies à ${\bf 10^{-3}}$ près.
- I-C-2- En fin de matinée, le documentaliste constate que 100 élèves dont 68 filles sont venus au CDI. Peut-on affirmer, au seuil de risque de 5%, que la fréquence des filles observée au CDI dans la matinée confirme l'hypothèse de l'enquête? Expliquer pourquoi.

REPONSES A L'EXERCICE I



I-A-2-
$$P_1=0,6\times 0,4=0,24$$
 I-A-3- $P_2=0,6\times 0,4+0,4\times 0,5=0,44$

I-A-4-
$$P_3=rac{6}{11}$$
 $P_3\simeq 0,5455$ En effet : $P_3=\mathbb{P}_S(F)=rac{\mathbb{P}(F\cap S)}{\mathbb{P}(S)}=rac{P_1}{P_2}=rac{0,24}{0,44}=rac{6}{11}$

I-A-5-
$$P_4 \simeq 0,3571$$

I-B-1-
$$p = 0, 6$$

I-B-2-
$$P_5 = 0, 4^n$$
 I-B-3- $P_6 = 1 - 0, 4^n$

I-B-4-
$$n_0 = 6$$
 car
$$P_6 \ge 0,99 \Leftrightarrow 1 - 0,4^n \ge 0,99 \Leftrightarrow 0,4^n \le 0,01$$

$$\Leftrightarrow n \ln 0,4 \le \ln(0,01)$$

$$\Leftrightarrow n \ge \frac{\ln(0,01)}{\ln 0,4} = 5,025... \text{ car } \ln(0,4) < 0.$$

I-C-1-
$$I = \begin{bmatrix} 0,504; 0,696 \end{bmatrix} \text{ car } I = \begin{bmatrix} p-1,96\sqrt{\frac{p(1-p)}{n}}; \ p+1,96\sqrt{\frac{p(1-p)}{n}} \end{bmatrix}$$
$$\text{donc} \quad I = \begin{bmatrix} 0,6-1,96\sqrt{\frac{0,6\times0,4}{100}}; \ 0,6+1,96\sqrt{\frac{0,6\times0,4}{100}} \end{bmatrix}.$$

I-C-2- L'hypothèse est confirmée car
$$0,68 \in I$$

EXERCICE II

Donner les réponses à cet exercice dans le cadre prévu à la page 5

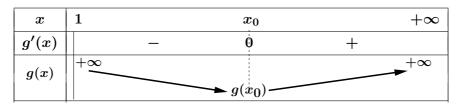
Partie A

On considère la fonction g définie par :

pour tout réel
$$x$$
 de]1; $+\infty$ [, $g(x) = \frac{x}{\ln x}$.

On note C_g la courbe représentative de g dans un repère orthogonal $(O; \vec{\imath}, \vec{\jmath})$.

- II-A-1g' désigne la dérivée de g. Déterminer, pour tout x > 1, g'(x). Détailler les calculs.
- II-A-2-On donne ci-dessous le tableau des variations de g:



Donner la valeur de x_0 . Calculer $g(x_0)$.

- II-A-3-Soit m un réel. Donner, suivant les valeurs de m, le nombre de solutions de l'équation: q(x) = m
- Déduire de la question précédente que l'équation g(x) = 4 a deux solutions. II-A-4-a-On les notera x_1 et x_2 , avec $x_1 < x_2$.
- Sur la figure est représentée la courbe \mathcal{C}_g . Placer les valeurs x_1 et x_2 . Laisser les II-A-4-btraits de construction.

Partie B

On considère maintenant la fonction f définie par :

pour tout réel
$$x$$
 de $]0$; $+\infty[$, $f(x) = x - 4 \ln x$.

On note \mathcal{C}_f la courbe représentative de f dans le même repère $(O; \vec{\imath}, \vec{\jmath})$.

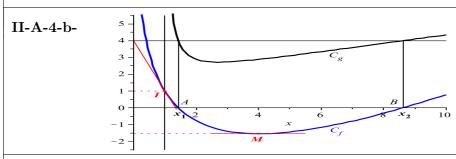
- II-B-1-a-
- Donner $\lim_{x\to 0^+} f(x)$.

 Que vaut $\lim_{x\to +\infty} \frac{\ln x}{x}$? En déduire $\lim_{x\to +\infty} f(x)$. Justifier la réponse. II-B-1-b-
- II-B-2f' désigne la dérivée de f. Donner, pour tout x > 0, f'(x).
- II-B-3-Soit I le point de la courbe \mathcal{C}_f d'abscisse 1. Donner une équation de la tangente à \mathcal{C}_f en I.
- II-B-4-Dresser le tableau des variations de f. f admet un extremum au point M de coordonnées (x_M, y_M) . Donner les valeurs exactes de x_M et de y_M , ainsi qu'une valeur approchée de y_M à 10^{-1} près.
- II-B-5-a-Expliquer pourquoi l'équation f(x) = 0 n'a pas de solution appartenant à [0; 1].
- II-B-5-b-On considère un point P de C_f de coordonnées (x, f(x)). Montrer que P appartient à l'axe des abscisses si et seulement si g(x) = 4.
- II-B-6-Sur la figure de la question II-A-4-b-, placer les points I et M, les tangentes à \mathcal{C}_f en I et en M, les points A et B d'intersection de \mathcal{C}_f avec l'axe des abscisses, puis tracer \mathcal{C}_f .

REPONSES A L'EXERCICE II

II-A-1-	Pour tout $x > 1$,		$\frac{\ln x - \frac{1}{x} \times x}{(\ln x)^2} = \frac{1}{2}$	$\frac{\ln x - 1}{(\ln x)^2}$
II-A-2-	$x_0 = e$	g($x_0) = \frac{e}{\ln e} = e.$	
II-A-3-	Condition sur m	m < e	m = e	m > e
	Nombre de solutions de $g(x) = m$	0	1	2

II-A-4-a- L'équation g(x) = 4 a deux solutions car 4 > e.



II-B-1-a- $\lim_{x \to 0^+} f(x) = +\infty.$

II-B-1-b-
$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$
 donc $\lim_{x \to +\infty} f(x) = +\infty$ car $f(x) = x \left(1 - 4 \frac{\ln x}{x}\right)$

II-B-2- Pour tout x > 0, $f'(x) = 1 - \frac{4}{x} = \frac{x-4}{x}$

II-B-3- Equation de la tangente en I: y = -3x + 4.

	\boldsymbol{x}	0	1	4		$+\infty$
II-B-4-	f'(x)	.	3	_ 0	+	
	- ()	$ +\infty$				$+\infty$
	$\int f(x)$			 		

 $x_M=4$ $y_M=4-4\ln 4$ $y_M\simeq -1,5$

II-B-5-a- f(x)=0 n'a pas de solution appartenant à]0;1]. En effet : f est décroissante sur]0;1] donc, pour tout x de]0;1], $f(x) \geq f(1)$. Comme f(1)=1, alors, pour tout x de]0;1], $f(x) \geq 1 > 0$.

II-B-5-b-
$$P \in (xx')$$
 \Leftrightarrow $x > 0$ et $f(x) = 0$
 \Leftrightarrow $x > 1$ et $f(x) = 0$ d'après II-B-5-a-
 \Leftrightarrow $x > 1$ et $x - 4 \ln x = 0$
 \Leftrightarrow $x > 1$ et $\frac{x}{\ln x} = 4$ car $\ln x \neq 0$
 \Leftrightarrow $x > 1$ et $g(x) = 4$.

II-B-6- Utiliser la figure de la question II-A-4-b-

EXERCICE III

Donner les réponses à cet exercice dans le cadre prévu à la page 7

Partie A

- III-A-1- Justifier que l'équation $\cos x = 0, 2$ a une unique solution dans l'intervalle $[0; \pi]$. On notera x_0 cette solution.
- III-A-2- On considère l'algorithme suivant :

```
Variables
        a, b et m sont des réels
        \boldsymbol{\delta} est un réel strictement positif
Début de l'Algorithme
        Entrer la valeur de \delta
        a prend la valeur 0
        b prend la valeur 3
        Tant que b-a > \delta
                                        faire
                  m prend la valeur \frac{a+b}{2}
                  Si \cos(m) > 0, 2 alors
                          \boldsymbol{a} prend la valeur \boldsymbol{m}
                          \boldsymbol{b} prend la valeur \boldsymbol{m}
         FinTantque
        Afficher a
        Afficher \boldsymbol{b}
Fin de l'algorithme
```

- III-A-2-a- On fait tourner cet algorithme en prenant $\delta = 0, 5$. Compléter le tableau en utilisant le nombre de colonnes nécessaires. Quelles sont les valeurs affichées pour a et b à la fin de l'algorithme?
- III-A-2-b- On exécute cet algorithme avec $\delta = 0, 1$. Les valeurs affichées sont 1,3125 pour a et 1,40625 pour b. Que peut-on en déduire pour x_0 ?

Partie B

On considère la fonction F définie, pour tout réel x de $\left[0; \frac{\pi}{2}\right]$, par : $F(x) = \sin(2x)$. On note \mathcal{C}_F la courbe représentative de F dans un repère orthogonal $(O; \vec{\imath}, \vec{\jmath})$.

- III-B-1- F' désigne la dérivée de F. Déterminer, pour tout $x \in \left[0; \frac{\pi}{2}\right], F'(x)$.
- III-B-2- Dresser le tableau des variations de F.
- III-B-3- Tracer la courbe \mathcal{C}_F .

Partie C

Soit $t \in [0; \frac{\pi}{2}]$. On note \mathcal{D}_t le domaine compris entre la courbe \mathcal{C}_F , l'axe des abscisses et les droites d'équations respectives x = 0 et x = t. Soit \mathcal{A}_t l'aire, en unités d'aires, de \mathcal{D}_t .

- III-C-1- Justifier que : $A_t = -\frac{1}{2}\cos(2t) + \frac{1}{2}$.
- III-C-2- On considère l'équation (E): $\mathcal{A}_t = 0, 4$.
- III-C-2-a- Justifier que l'équation (E) est équivalente à l'équation $\cos(2t) = \beta$, où β est un réel à préciser.
- III-C-2-b- A l'aide de la question III-A-2-b-, donner une valeur approchée à 0,05 près de la solution t_0 de l'équation (E).
- III-C-3- Sur la figure de la question III-B-3-, hachurer le domaine \mathcal{D}_{t_0} .

REPONSES A L'EXERCICE III

III-A-1-L'équation $\cos x = 0, 2$ a une unique solution dans $[0; \pi]$ en effet La fonction cos est continue et strictement décroissante sur $[0; \pi]$ et $\cos(0) = 1$ et $\cos(\pi) = -1$.

Comme 0, 2 appartient à [-1; 1], d'après le théoreme des valeurs intermédiaires, il existe donc un unique réel x_0 appartenant à $[0\,;\,\pi]$ tel que $\cos(x_0)=0,2$.

111-A-2-a-	

	Initialisation	Fin de l'étape 1	Fin de l'étape 2	Fin de l'étape 3	
m =		1,5	$\boldsymbol{0,75}$	1,125	
$\cos m =$		0,0707	0,7316	0,4311	
a =	0	0	0,75	1,125	
b =	3	1,5	1,5	1,5	
b-a =	3	1,5	0,75	0,375	

Les valeurs affichées à la fin de l'algorithme sont :

pour a:1,125

pour b:1,5

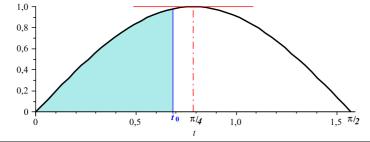
III-A-2-b x_0 vérifie : $1,3125 < x_0 < 1,40625.$

III-B-2-

III-B-1- Pour tout
$$x \in [0; \frac{\pi}{2}]$$
,

 $F'(x) = 2\cos(2x)$

x	0		$\frac{\pi}{4}$		$rac{\pi}{2}$
F'(x)	2	+	0	_	-2
F(x)	0 —		- ¹ \		



III-C-1-
$$A_t = -\frac{1}{2}\cos(2t) + \frac{1}{2}$$
 car

$$\mathcal{A}_t = \int_0^t \sin(2x) \, dx = \left[-rac{1}{2} \cos(2x)
ight]_0^t = -rac{1}{2} \cos(2t) + rac{1}{2}.$$

III-C-2-a-
$$\beta = 0, 2$$

$$eta=0,2$$
 en enet $\mathcal{A}_t=0,4$ \Leftrightarrow $-rac{1}{2}\cos(2t)+rac{1}{2}=0,4$ \Leftrightarrow $-rac{1}{2}\cos(2t)=-0,1$

D'où
$$\mathcal{A}_t = 0, 4 \Leftrightarrow \cos(2t) = 0, 2.$$

III-C-2-b-
$$t_0 \simeq 0,68$$

Utiliser la figure de III-B-3-.

EXERCICE IV

Donner les réponses à cet exercice dans le cadre prévu à la page 9

Dans l'espace rapporté à un repère orthonormé $(O; \vec{\imath}, \vec{\jmath}, \vec{k})$, on considère les plans \mathcal{P}_1 et \mathcal{P}_2 d'équations cartésiennes respectives :

$$\mathcal{P}_1 \,:\, -2x+y+z=8$$
 et $\mathcal{P}_2 \,:\, 2x+5y-z=-20$.

- IV-1-a- Donner les coordonnées d'un vecteur \vec{n}_1 normal au plan \mathcal{P}_1 et d'un vecteur \vec{n}_2 normal au plan \mathcal{P}_2 .
- IV-1-b- Justifier que les plans \mathcal{P}_1 et \mathcal{P}_2 sont sécants.
- IV-2- On note \mathcal{D}_1 la droite d'intersection des plans \mathcal{P}_1 et \mathcal{P}_2 .
- IV-2-a- Justifier que le point A(-4; -2; 2) appartient à \mathcal{D}_1 .
- IV-2-b- Montrer que le vecteur $\vec{u}_1(1;0;2)$ est un vecteur directeur de la droite \mathcal{D}_1 .
- IV-3- Donner un système d'équations paramétriques de la droite \mathcal{D}_1 en notant t le paramètre.
- ${f IV}$ -4- On considère la droite ${m \mathcal D_2}$ définie par le système d'équations paramétriques suivant :

$$\mathcal{D}_2 \ : \left\{ egin{array}{ll} x=5 \ y=k & ext{avec } k \in \mathbb{R}. \ z=-2+k \end{array}
ight.$$

Dans cette question, on va montrer que les droites \mathcal{D}_1 et \mathcal{D}_2 sont non coplanaires.

- IV-4-a- Donner les coordonnées d'un vecteur directeur \vec{u}_2 de la droite \mathcal{D}_2 .
- IV-4-b- Justifier que les droites \mathcal{D}_1 et \mathcal{D}_2 ne sont pas parallèles.
- IV-4-c- Montrer que l'intersection $\mathcal{D}_1 \cap \mathcal{D}_2$ est vide.
- IV-5- Soit H un point de la droite \mathcal{D}_1 et K un point de la droite \mathcal{D}_2 .
- IV-5-a- Donner les coordonnées du vecteur \overrightarrow{HK} en fonction des paramètres t et k.
- IV-5-b Montrer que la droite (HK) est perpendiculaire à \mathcal{D}_1 si et seulement si on a :

$$5t - 2k = 1$$
.

- IV-5-c- De même, la droite (HK) est perpendiculaire à \mathcal{D}_2 si et seulement si t et k vérifient la condition at + bk = c où a, b, c sont trois réels. Donner les valeurs de ces trois réels.
- IV-5-d- Pour quelles valeurs de t et k la droite (HK) est-elle perpendiculaire aux deux droites \mathcal{D}_1 et \mathcal{D}_2 ? Donner alors les coordonnées de H et de K.
- IV-5-e- Cette perpendiculaire commune (HK) aux droites \mathcal{D}_1 et \mathcal{D}_2 permet de définir la distance entre les droites \mathcal{D}_1 et \mathcal{D}_2 . Cette distance d est égale à la longueur HK. Donner la valeur exacte de d.

REPONSES A L'EXERCICE IV

IV-1-a-	$ec{n}_1 \ \ (-2;1;1) \ \ \ \ ec{n}_2 \ \ (2;5;-1)$
IV-1-b-	\mathcal{P}_1 et \mathcal{P}_2 sont sécants car $\vec{n}_1 \cdot \vec{n}_2 = 0$ donc \mathcal{P}_1 et \mathcal{P}_2 sont perpendiculaires autre explication : les vecteurs \vec{n}_1 et \vec{n}_2 ne sont pas colinéaires.
IV-2-a-	$A\in\mathcal{D}_1$ car d'une part $-2x_A+y_A+z_A=8-2+2=8$ donc $A\in\mathcal{P}_1$ d'autre part $2x_A+5y_A-z_A=-8-10-2=-20$ donc $A\in\mathcal{P}_2$ donc $A\in\mathcal{P}_1\cap\mathcal{P}_2=\mathcal{D}_1$
IV-2-b-	\vec{u}_1 est un vecteur directeur de \mathcal{D}_1 car d'une part $\vec{u}_1.\vec{n_1}=0$ donc $\vec{u}_1\perp\vec{n_1}$, d'autre part $\vec{u}_1.\vec{n_2}=0$ donc $\vec{u}_1\perp\vec{n_2}$, donc \vec{u}_1 est un vecteur directeur de la droite $\mathcal{D}_1=\mathcal{P}_1\cap\mathcal{P}_2$.
IV-3-	$\mathcal{D}_1 : \left\{egin{array}{l} x=-4+t \ y=-2 \ z=2+2t \end{array} ight.$ avec $t\in\mathbb{R}.$
IV-4-a-	$ec{u}_{2} \ \ (0;1;1)$
IV-4-b-	\mathcal{D}_1 et \mathcal{D}_2 ne sont pas parallèles car $\vec{u_1}$ et $\vec{u_2}$ ne sont pas colinéaires.
IV-4-c-	$\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset$ car $M(x;y;z) \in \mathcal{D}_1 \cap \mathcal{D}_2$ si et seulement s'il existe un couple de réels (t,k) tel que : $ \begin{cases} 5 = -4 + t \\ k = -2 \\ -2 + k = 2 + 2t \end{cases} \Leftrightarrow \begin{cases} t = 9 \\ k = -2 \\ -4 = 20 \end{cases} $ impossible ce système n'a donc pas de solution.
IV-5-a-	$\overrightarrow{HK}\left(9-t;k+2;-4+k-2t ight)$
IV-5-b-	$(HK) \perp \mathcal{D}_1 \iff \overrightarrow{HK} \cdot \overrightarrow{u_1} = 0 \ \Leftrightarrow (9-t) \times 1 + (k+2) \times 0 + (-4+k-2t) \times 2 = 0 \ \Leftrightarrow 5t-2k = 1$
IV-5-c-	a=-1 $b=1$ $c=1$
IV-5-d-	$t=1 \ \ k=2 \ \ \ H(-3;-2;4) \ \ \ K(5;2;0)$
IV-5-e-	$d = \sqrt{8^2 + 4^2 + (-4)^2} = \sqrt{96} = 4\sqrt{6}$