Vous trouverez ci-dessous une proposition de correction.

Pour certaines questions, il est toutefois possible qu'une (ou plusieurs) autre(s) réponse(s) correcte(s) soi(en)t acceptée(s).

Mathématiques - REPONSES A l' EXERCICE I

I-1- Entourer la (les) bonne(s) réponse(s) :

Α

C

D

 $\lim_{x \to +\infty} f(x) = 1$

En effet:

 $\frac{\ln x}{x} \xrightarrow[x \to +\infty]{} 0 \text{ et } \lim_{X \to 0} e^X = 1$

I-3- Δ : y = 1

I-4- $\lim_{x \to 0^+} f(x) = 0$

0 En effet : $\ln x \xrightarrow[x\to 0^+]{} -\infty$ donc $\frac{\ln x}{x} \xrightarrow[x\to 0^+]{} -\infty$ et $\lim_{x\to -\infty} e^x = 0$

В

I-5- Soit x > 0. Détail du calcul de g'(x):

$$g'(x) = \frac{x \times \frac{1}{x} - 1 \times \ln x}{x^2} = \frac{1 - \ln x}{x^2}$$

I-6- Pour tout x > 0, $h(x) = \frac{1}{x^2} e^{\frac{\ln x}{x}}$

et h(x) est de signe positif

I-7

x	0		e		+∞
f'(x)		+	0	_	
f(x)	0 -		$\rightarrow f(e)$		→ 1

I-8-

 $y_A = e^{\frac{1}{e}}$

 $y_A \approx 1.4$

I-9- Entourer la (les) bonne(s) réponse(s) :

В

В

 $\boldsymbol{\mathcal{C}}$

D

I-10- Entourer la (les) bonne(s) réponse(s) :

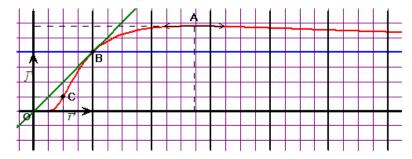
 \boldsymbol{A}

Α

C

D

I-11-



I-12-

Affirmation A:

VRAIE

FAUSSE

Affirmation **B**:

VRAIE

FAUSSE

Affirmation **C**:

VRAIE

FAUSSE

Mathématiques - REPONSES A l' EXERCICE II

II-1-	Entourer la (les) bonne(s) réponse(s) :	A	В	С	D
II-2-	Entourer la (les) bonne(s) réponse(s) :	Α	В	<u>C</u>	D
II-3-	Entourer la (les) bonne(s) réponse(s) :	Α	В	C	D
II-4-	Entourer la (les) bonne(s) réponse(s) :	\boldsymbol{A}	В	С	D

II-5-

х	2	4	6	- m
$P(G_1=x)$	1 6	1 6	1 6	$\frac{1}{2}$

II-6-
$$P_1 = \frac{1}{2}$$

II-7-
$$E(G_1) = 2 - \frac{m}{2}$$

En effet:
$$E(G_1) = 2 \times \frac{1}{6} + 4 \times \frac{1}{6} + 6 \times \frac{1}{6} + (-m) \times \frac{1}{2}$$

II-8-
$$E(G_1) \ge 0$$
 si et seulement si $m \le 4$

II-9-
$$P_2 = \frac{1}{6}$$

En effet:
$$P_2 = P(G_T = 0)$$

 $= P((G_1 = 4) \cap (G_2 = -4)) + P((G_1 = -4) \cap (G_2 = 4))$
 $= P(G_1 = 4) \times P(G_2 = -4) + P(G_1 = -4) \times P(G_2 = 4)$
 $= \frac{1}{6} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{6}$

II-10- Loi suivie par
$$X: X \hookrightarrow \mathcal{B}\left(n, \frac{1}{2}\right)$$

II-11-
$$q_n = 1 - \left(\frac{1}{2}\right)^n$$

II-12-
$$n_0 = 7$$

En effet :
$$q_n > 0.99 \Leftrightarrow 1 - \left(\frac{1}{2}\right)^n > 0.99$$

 $\Leftrightarrow (0.5)^n < 0.01$
 $\Leftrightarrow n \ln(0.5) < \ln(0.01)$
 $\Leftrightarrow n > \frac{\ln(0.01)}{\ln(0.5)}$ (car $\ln(0.5) < 0$)

De plus
$$\frac{\ln(0.01)}{\ln(0.5)} \approx 6.64$$

Mathématiques – REPONSES A l' EXERCICE III

III-1- Affirmation A: VRAIE FAUSSE

Affirmation B: VRAIE FAUSSE

Affirmation C: VRAIE FAUSSE

Affirmation D: VRAIE FAUSSE

III-2- Les points appartenant au plan \mathcal{P} sont : B et C

III-3- Entourer la (les) bonne(s) réponse(s) : A B \(\bar{C} \)

III-4- Un système d'équations paramétriques de la droite \mathcal{D} est :

$$\begin{cases} x = 1 + t \\ y = 1 - t \\ z = 1 + 2t \end{cases}$$

III-5- $x_K = \frac{7}{6}$ $y_K = \frac{5}{6}$ $z_K = \frac{4}{3}$ En effet : $K \in \mathcal{D} \cap \mathcal{P}$. Donc $x_K - y_K + 2z_K - 3 = 0$ et il existe t tel que $\begin{cases} x_K = 1 + t \\ y_K = 1 - t \\ z_K = 1 + 2t \end{cases}$

ce qui donne (1+t) - (1-t) + 2(1+2t) - 3 = 0 soit 6t - 1 = 0 d'où $t = \frac{1}{6}$

III-6- \overrightarrow{BC} $\left(1; 0; -\frac{1}{2}\right)$

III-7- Equation cartésienne du plan \mathcal{P}_1 : 2x - z - 1 = 0

III-8- Entourer la (les) bonne(s) réponse(s) : A B C D

III-9- $x_H = \frac{6}{5}$ $y_H = 1$ $z_H = \frac{7}{5}$

III-10- Equation cartésienne du plan \mathcal{P}_2 : x-y+2z-2=0

 \mathcal{P}_2 et \mathcal{P} étant parallèles, ils ont mêmes vecteurs normaux.

Donc \mathcal{P}_2 a une équation de la forme : x - y + 2z + d = 0

Comme \mathcal{P}_2 passe par A(1; 1; 1), ses coordonnées vérifient l'équation de \mathcal{P}_2 .

On a donc : 1 - 1 + 2 + d = 0. D'où d = -2

III-11- $d = \frac{\sqrt{6}}{6}$ En effet : d = AK avec $\overrightarrow{AK} = \left(\frac{1}{6}; -\frac{1}{6}; \frac{1}{3}\right)$ d'où $d = \sqrt{\left(\frac{1}{6}\right)^2 + \left(-\frac{1}{6}\right)^2 + \left(\frac{1}{3}\right)^2} = \sqrt{\frac{1}{36} + \frac{1}{36} + \frac{4}{36}} = \frac{\sqrt{6}}{6}$

III-12- Affirmation A: VRAIE FAUSSE

Affirmation B: VRAIE FAUSSE

Affirmation C: VRAIE FAUSSE

Affirmation D: VRAIE FAUSSE

En effet :

Mathématiques - REPONSES A l' EXERCICE IV

IV-1-Forme algébrique de z_A :

$$z_A = 2 + 2\sqrt{3} i$$

Module de z_A :

$$|z_A| = \sqrt{4 + 12} = 4$$

Forme exponentielle de z_A :

$$z_A = 4\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 4e^{\frac{i\pi}{3}}$$

IV-2-Forme algébrique de z_C :

$$z_C = 2 - 2\sqrt{3} i$$

Forme exponentielle de z_C :

$$z_C = 4 e^{-\frac{i\pi}{3}}$$

IV-3-Entourer la (les) bonne(s) réponse(s) :

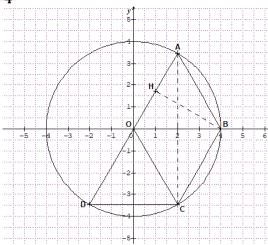
Α

В

 \boldsymbol{c}

D

IV-4-



IV-5-

Le triangle *OAB* est

équilatéral

Le quadrilatère ABCD est

un trapèze

 $1+\sqrt{3}i$ $z_H = \frac{1}{2} z_A$ et donc $z_H =$ IV-6-

En effet:

Le triangle *OAB* étant équilatéral, la hauteur issue de *B* est aussi la médiane. Donc H est le milieu du segment [OA]

IV-7-Entourer la (les) bonne(s) réponse(s) :

Α

 $\boldsymbol{\mathcal{C}}$

D

IV-8- $\ell_1 =$

$$\ell_2 = 4\sqrt{a^2 - 1}$$

Le quadrilatère *OABC* est un carré si et seulement si IV-9-

В

En effet:

OABC est un carré $\Leftrightarrow \ell_1 = \ell_2 \Leftrightarrow 1 = \sqrt{a^2 - 1} \Leftrightarrow a^2 - 1 = 1$ (car deux nombres positifs sont égaux ssi leurs carrés sont égaux)

$$\Leftrightarrow a^2 = 2 \Leftrightarrow a = \sqrt{2} \text{ ou } a = -\sqrt{2}$$

or a > 1, donc il y a une seule solution $a = \sqrt{2}$

IV-10- (*E*) admet deux racines complexes non réelles. En effet :

$$\Delta = (-4)^2 - 4 \times 1 \times 4 \ a^2 = 16(1 - a^2) < 0$$

IV-11-
$$z_1 = 2 + 2 i \sqrt{a^2 - 1}$$

$$z_2 = 2 - 2 i \sqrt{a^2 - 1}$$

IV-12-
$$\mathcal{E}' = \{0 ; 2 + 2i\sqrt{a^2 - 1} ; 2 - 2i\sqrt{a^2 - 1} \}$$

Justifications aux QCM et VRAI-FAUX

EXERCICE I

Question 1

$$1 - \ln x \ge 0 \iff \ln x \le 1 \iff x \le e$$

Question 9

$$f(1) = e^{\frac{\ln 1}{1}} = e^0 = 1 \text{ et } f'(1) = (1 - \ln 1)^{\frac{1}{1^2}} e^0 = 1.$$

Donc T_B a pour équation : y = 1(x - 1) + 1 soit y = x.

Question 10

$$y_C = e^{\frac{\ln \frac{1}{2}}{\frac{1}{2}}} = e^{2\ln \frac{1}{2}} = e^{-2\ln 2} = \frac{1}{e^{2\ln 2}} = \frac{1}{e^{\ln 4}} = \frac{1}{4}$$

Ouestion 12

Voir tableau de variations

- B) est fausse car pour $m = y_A$, l'équation admet une solution
- C) est fausse car pour m = 1, l'équation n'admet qu'une seule solution (attention, ne pas tenir compte de la limite)

EXERCICE II

Question 1

$$P(A \cap B) = P(A) - P(A \cap \overline{B}) = 0.4 - 0.3 = 0.1$$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.4 + 0.6 - 0.1 = 0.9$

Question 2

$$P_{(X>4)}(5 \le X \le 10) = \frac{P(5 \le X \le 10)}{P(X>4)} = \frac{\frac{5}{15}}{\frac{14}{15}} = \frac{5}{14}$$

Question 3

$$P(2 \le X \le 5) = P(X \le 5) - P(X \le 2) = (1 - e^{-5\lambda}) - (1 - e^{-2\lambda}) = e^{-2\lambda} - e^{-5\lambda}$$

Question 4

$$P(X > E(X)) = P(X > \frac{1}{\lambda}) = e^{-\frac{1}{\lambda} \times \lambda} = e^{-1} = \frac{1}{\rho}$$

EXERCICE III

Question 1

Ce sont des théorèmes de cours

Question 3

Un vecteur normal est donné par les coefficients de x, y et z dans l'équation cartésienne du plan. Il s'agit donc de $\overrightarrow{n_3}$ ainsi que de $\overrightarrow{n_4}$ qui lui est colinéaire.

Question 8

Coordonnées de $\overrightarrow{BC}(1;0;-\frac{1}{2})$; donc les seuls vecteurs directeurs possibles de (BC) sont les vecteurs qui lui sont colinéaires, comme par exemple le vecteur de coordonnées (-2;0;1). Donc seule la réponse B) convient.

Question 12

Le point H est un point de (BC) donc les droites (HK) et (BC) sont sécantes (en H) et par conséquent coplanaires. (de plus elles sont toutes les deux contenues dans le plan \mathcal{P} .

De plus
$$\overline{HK}(\frac{7}{6} - \frac{6}{5}; \frac{5}{6} - 1; \frac{4}{3} - \frac{7}{5})$$
 soit $\overline{HK}(-\frac{1}{30}; -\frac{1}{6}; -\frac{1}{15})$.

Donc
$$\overrightarrow{BC}$$
. $\overrightarrow{HK} = 1 \times \left(-\frac{1}{30}\right) + 0 \times \left(-\frac{1}{6}\right) + \left(-\frac{1}{2}\right) \times \left(-\frac{1}{15}\right) = -\frac{1}{30} + \frac{1}{30} = 0$ donc les droites (BC) et (HK) sont orthogonales car leurs vecteurs directeurs le sont.

EXERCICE IV

Ouestion 3

$$z_D = -z_A = e^{i\pi} \times 4e^{\frac{2i\pi}{3}} = 4e^{i\left(\pi + \frac{2\pi}{3}\right)} = 4e^{\frac{5i\pi}{3}} = 4e^{-\frac{i\pi}{3}}$$
 (Attention, le module doit être positif!)

$$\mathcal{A} = \frac{(BC + AD) \times BH}{2} = \frac{(4+8) \times 2\sqrt{3}}{2} = 12\sqrt{3}; \quad \text{en} \quad \text{effet} \quad z_{\overline{BH}} = 1 + i\sqrt{3} - 4 = -3 + i\sqrt{3} \quad \text{donc} \quad BH = \sqrt{(-3)^2 + 3} = \sqrt{12} = 2\sqrt{3}$$